3.1901 \(\int (a+\frac {b}{x^2})^{3/2} x \, dx\)

Optimal. Leaf size=63 \[ \frac {1}{2} x^2 \left (a+\frac {b}{x^2}\right )^{3/2}-\frac {3}{2} b \sqrt {a+\frac {b}{x^2}}+\frac {3}{2} \sqrt {a} b \tanh ^{-1}\left (\frac {\sqrt {a+\frac {b}{x^2}}}{\sqrt {a}}\right ) \]

[Out]

1/2*(a+b/x^2)^(3/2)*x^2+3/2*b*arctanh((a+b/x^2)^(1/2)/a^(1/2))*a^(1/2)-3/2*b*(a+b/x^2)^(1/2)

________________________________________________________________________________________

Rubi [A]  time = 0.03, antiderivative size = 63, normalized size of antiderivative = 1.00, number of steps used = 5, number of rules used = 5, integrand size = 13, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.385, Rules used = {266, 47, 50, 63, 208} \[ \frac {1}{2} x^2 \left (a+\frac {b}{x^2}\right )^{3/2}-\frac {3}{2} b \sqrt {a+\frac {b}{x^2}}+\frac {3}{2} \sqrt {a} b \tanh ^{-1}\left (\frac {\sqrt {a+\frac {b}{x^2}}}{\sqrt {a}}\right ) \]

Antiderivative was successfully verified.

[In]

Int[(a + b/x^2)^(3/2)*x,x]

[Out]

(-3*b*Sqrt[a + b/x^2])/2 + ((a + b/x^2)^(3/2)*x^2)/2 + (3*Sqrt[a]*b*ArcTanh[Sqrt[a + b/x^2]/Sqrt[a]])/2

Rule 47

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> Simp[((a + b*x)^(m + 1)*(c + d*x)^n)/(b*
(m + 1)), x] - Dist[(d*n)/(b*(m + 1)), Int[(a + b*x)^(m + 1)*(c + d*x)^(n - 1), x], x] /; FreeQ[{a, b, c, d},
x] && NeQ[b*c - a*d, 0] && GtQ[n, 0] && LtQ[m, -1] &&  !(IntegerQ[n] &&  !IntegerQ[m]) &&  !(ILeQ[m + n + 2, 0
] && (FractionQ[m] || GeQ[2*n + m + 1, 0])) && IntLinearQ[a, b, c, d, m, n, x]

Rule 50

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> Simp[((a + b*x)^(m + 1)*(c + d*x)^n)/(b*
(m + n + 1)), x] + Dist[(n*(b*c - a*d))/(b*(m + n + 1)), Int[(a + b*x)^m*(c + d*x)^(n - 1), x], x] /; FreeQ[{a
, b, c, d}, x] && NeQ[b*c - a*d, 0] && GtQ[n, 0] && NeQ[m + n + 1, 0] &&  !(IGtQ[m, 0] && ( !IntegerQ[n] || (G
tQ[m, 0] && LtQ[m - n, 0]))) &&  !ILtQ[m + n + 2, 0] && IntLinearQ[a, b, c, d, m, n, x]

Rule 63

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[{p = Denominator[m]}, Dist[p/b, Sub
st[Int[x^(p*(m + 1) - 1)*(c - (a*d)/b + (d*x^p)/b)^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] &
& NeQ[b*c - a*d, 0] && LtQ[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntLinearQ[a,
b, c, d, m, n, x]

Rule 208

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-(a/b), 2]*ArcTanh[x/Rt[-(a/b), 2]])/a, x] /; FreeQ[{a,
b}, x] && NegQ[a/b]

Rule 266

Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Dist[1/n, Subst[Int[x^(Simplify[(m + 1)/n] - 1)*(a
+ b*x)^p, x], x, x^n], x] /; FreeQ[{a, b, m, n, p}, x] && IntegerQ[Simplify[(m + 1)/n]]

Rubi steps

\begin {align*} \int \left (a+\frac {b}{x^2}\right )^{3/2} x \, dx &=-\left (\frac {1}{2} \operatorname {Subst}\left (\int \frac {(a+b x)^{3/2}}{x^2} \, dx,x,\frac {1}{x^2}\right )\right )\\ &=\frac {1}{2} \left (a+\frac {b}{x^2}\right )^{3/2} x^2-\frac {1}{4} (3 b) \operatorname {Subst}\left (\int \frac {\sqrt {a+b x}}{x} \, dx,x,\frac {1}{x^2}\right )\\ &=-\frac {3}{2} b \sqrt {a+\frac {b}{x^2}}+\frac {1}{2} \left (a+\frac {b}{x^2}\right )^{3/2} x^2-\frac {1}{4} (3 a b) \operatorname {Subst}\left (\int \frac {1}{x \sqrt {a+b x}} \, dx,x,\frac {1}{x^2}\right )\\ &=-\frac {3}{2} b \sqrt {a+\frac {b}{x^2}}+\frac {1}{2} \left (a+\frac {b}{x^2}\right )^{3/2} x^2-\frac {1}{2} (3 a) \operatorname {Subst}\left (\int \frac {1}{-\frac {a}{b}+\frac {x^2}{b}} \, dx,x,\sqrt {a+\frac {b}{x^2}}\right )\\ &=-\frac {3}{2} b \sqrt {a+\frac {b}{x^2}}+\frac {1}{2} \left (a+\frac {b}{x^2}\right )^{3/2} x^2+\frac {3}{2} \sqrt {a} b \tanh ^{-1}\left (\frac {\sqrt {a+\frac {b}{x^2}}}{\sqrt {a}}\right )\\ \end {align*}

________________________________________________________________________________________

Mathematica [C]  time = 0.01, size = 47, normalized size = 0.75 \[ -\frac {b \sqrt {a+\frac {b}{x^2}} \, _2F_1\left (-\frac {3}{2},-\frac {1}{2};\frac {1}{2};-\frac {a x^2}{b}\right )}{\sqrt {\frac {a x^2}{b}+1}} \]

Antiderivative was successfully verified.

[In]

Integrate[(a + b/x^2)^(3/2)*x,x]

[Out]

-((b*Sqrt[a + b/x^2]*Hypergeometric2F1[-3/2, -1/2, 1/2, -((a*x^2)/b)])/Sqrt[1 + (a*x^2)/b])

________________________________________________________________________________________

fricas [A]  time = 0.84, size = 129, normalized size = 2.05 \[ \left [\frac {3}{4} \, \sqrt {a} b \log \left (-2 \, a x^{2} - 2 \, \sqrt {a} x^{2} \sqrt {\frac {a x^{2} + b}{x^{2}}} - b\right ) + \frac {1}{2} \, {\left (a x^{2} - 2 \, b\right )} \sqrt {\frac {a x^{2} + b}{x^{2}}}, -\frac {3}{2} \, \sqrt {-a} b \arctan \left (\frac {\sqrt {-a} x^{2} \sqrt {\frac {a x^{2} + b}{x^{2}}}}{a x^{2} + b}\right ) + \frac {1}{2} \, {\left (a x^{2} - 2 \, b\right )} \sqrt {\frac {a x^{2} + b}{x^{2}}}\right ] \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b/x^2)^(3/2)*x,x, algorithm="fricas")

[Out]

[3/4*sqrt(a)*b*log(-2*a*x^2 - 2*sqrt(a)*x^2*sqrt((a*x^2 + b)/x^2) - b) + 1/2*(a*x^2 - 2*b)*sqrt((a*x^2 + b)/x^
2), -3/2*sqrt(-a)*b*arctan(sqrt(-a)*x^2*sqrt((a*x^2 + b)/x^2)/(a*x^2 + b)) + 1/2*(a*x^2 - 2*b)*sqrt((a*x^2 + b
)/x^2)]

________________________________________________________________________________________

giac [A]  time = 0.28, size = 79, normalized size = 1.25 \[ \frac {1}{2} \, \sqrt {a x^{2} + b} a x \mathrm {sgn}\relax (x) - \frac {3}{4} \, \sqrt {a} b \log \left ({\left (\sqrt {a} x - \sqrt {a x^{2} + b}\right )}^{2}\right ) \mathrm {sgn}\relax (x) + \frac {2 \, \sqrt {a} b^{2} \mathrm {sgn}\relax (x)}{{\left (\sqrt {a} x - \sqrt {a x^{2} + b}\right )}^{2} - b} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b/x^2)^(3/2)*x,x, algorithm="giac")

[Out]

1/2*sqrt(a*x^2 + b)*a*x*sgn(x) - 3/4*sqrt(a)*b*log((sqrt(a)*x - sqrt(a*x^2 + b))^2)*sgn(x) + 2*sqrt(a)*b^2*sgn
(x)/((sqrt(a)*x - sqrt(a*x^2 + b))^2 - b)

________________________________________________________________________________________

maple [B]  time = 0.01, size = 107, normalized size = 1.70 \[ -\frac {\left (\frac {a \,x^{2}+b}{x^{2}}\right )^{\frac {3}{2}} \left (-3 a \,b^{2} x \ln \left (\sqrt {a}\, x +\sqrt {a \,x^{2}+b}\right )-3 \sqrt {a \,x^{2}+b}\, a^{\frac {3}{2}} b \,x^{2}-2 \left (a \,x^{2}+b \right )^{\frac {3}{2}} a^{\frac {3}{2}} x^{2}+2 \left (a \,x^{2}+b \right )^{\frac {5}{2}} \sqrt {a}\right ) x^{2}}{2 \left (a \,x^{2}+b \right )^{\frac {3}{2}} \sqrt {a}\, b} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a+b/x^2)^(3/2)*x,x)

[Out]

-1/2*((a*x^2+b)/x^2)^(3/2)*x^2*(-2*(a*x^2+b)^(3/2)*a^(3/2)*x^2+2*(a*x^2+b)^(5/2)*a^(1/2)-3*(a*x^2+b)^(1/2)*a^(
3/2)*x^2*b-3*ln(a^(1/2)*x+(a*x^2+b)^(1/2))*x*a*b^2)/(a*x^2+b)^(3/2)/b/a^(1/2)

________________________________________________________________________________________

maxima [A]  time = 1.97, size = 66, normalized size = 1.05 \[ \frac {1}{2} \, \sqrt {a + \frac {b}{x^{2}}} a x^{2} - \frac {3}{4} \, \sqrt {a} b \log \left (\frac {\sqrt {a + \frac {b}{x^{2}}} - \sqrt {a}}{\sqrt {a + \frac {b}{x^{2}}} + \sqrt {a}}\right ) - \sqrt {a + \frac {b}{x^{2}}} b \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b/x^2)^(3/2)*x,x, algorithm="maxima")

[Out]

1/2*sqrt(a + b/x^2)*a*x^2 - 3/4*sqrt(a)*b*log((sqrt(a + b/x^2) - sqrt(a))/(sqrt(a + b/x^2) + sqrt(a))) - sqrt(
a + b/x^2)*b

________________________________________________________________________________________

mupad [B]  time = 1.56, size = 48, normalized size = 0.76 \[ \frac {a\,x^2\,\sqrt {a+\frac {b}{x^2}}}{2}-b\,\sqrt {a+\frac {b}{x^2}}+\frac {3\,\sqrt {a}\,b\,\mathrm {atanh}\left (\frac {\sqrt {a+\frac {b}{x^2}}}{\sqrt {a}}\right )}{2} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x*(a + b/x^2)^(3/2),x)

[Out]

(a*x^2*(a + b/x^2)^(1/2))/2 - b*(a + b/x^2)^(1/2) + (3*a^(1/2)*b*atanh((a + b/x^2)^(1/2)/a^(1/2)))/2

________________________________________________________________________________________

sympy [A]  time = 2.72, size = 88, normalized size = 1.40 \[ \frac {3 \sqrt {a} b \operatorname {asinh}{\left (\frac {\sqrt {a} x}{\sqrt {b}} \right )}}{2} + \frac {a^{2} x^{3}}{2 \sqrt {b} \sqrt {\frac {a x^{2}}{b} + 1}} - \frac {a \sqrt {b} x}{2 \sqrt {\frac {a x^{2}}{b} + 1}} - \frac {b^{\frac {3}{2}}}{x \sqrt {\frac {a x^{2}}{b} + 1}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b/x**2)**(3/2)*x,x)

[Out]

3*sqrt(a)*b*asinh(sqrt(a)*x/sqrt(b))/2 + a**2*x**3/(2*sqrt(b)*sqrt(a*x**2/b + 1)) - a*sqrt(b)*x/(2*sqrt(a*x**2
/b + 1)) - b**(3/2)/(x*sqrt(a*x**2/b + 1))

________________________________________________________________________________________